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ABSTRACT. Using an elementary argument we find an upper bound on the
Yamabe constant of the outermost minimal hypersurface of an asymptotically
flat manifold with nonnegative scalar curvature that satisfies the Riemannian
Penrose Inequality. Provided the manifold satisfies the Riemannian Penrose
Inequality with rigidity, we show that equality holds in the inequality if and
only if the manifold is the Riemannian Schwarzschild manifold.

1. INTRODUCTION AND MAIN RESULT

A classic result by Hawking [7] states that each connected component of the out-
ermost trapped surface in a spacelike slice of a spacetime that satisfies the dominant
energy condition has to be, topologically, either toroidal or spherical. Hawking’s re-
sult was recently extended to higher dimensions by Galloway and Schoen [6], where
it is proved that, except for exceptional cases, the outermost trapped surfaces in
any spacelike slice of a spacetime satisfying the dominant energy condition is of
positive Yamabe type, i.e. admits a conformally related metric with positive scalar
curvature. The exceptional cases were later ruled out by Galloway in [4].

Inside the class of asymptotically flat manifolds with nonnegative scalar curva-
ture ///XF (which are usually interpreted as time-symmetric slices of spacetimes
satisfying the dominant energy condition) the above results read as follows: the
Yamabe constant (Euler characteristic, in dimension 3) of the outermost minimal
hypersurface of a manifold in ///:{F is strictly positive.

In this note we give an upper bound for the Yamabe constant (amount of com-
ponents, in dimension 3) of the outermost minimal hypersurface inside a manifold
in ///XF. We prove that the inequality is rigid whenever the manifold satisfies
the Riemannian Penrose Inequality with rigidity. (See definition 3 below.) More
precisely, we prove the following.

Theorem 1. Let n > 3 and consider (M™,g) € . { containing an outermost
minimal hypersurface 3. The following holds:

(i) If n =3, then
1 .
#{ components of B} < ——m?wa(|[RY || ) + 2| Ric(v)|L~ (=))-
Equality is attained if and only if the part of (M?,g) outside the outer-

most minimal hypersurface is isometric to the Riemannian Schwarzschild
3-manifold of mass m. (See definition 2.)
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(ii) If (M™, g) satisfies the Riemannian Penrose Inequality (e.g. if 4 <n <7
c.f. [2]), then

Y (2, glx) < (2m) 72 (wno1) T (||RM | oo 5 + 2| Ric(v)]| oo (5))-

If, further, (M, g) satisfies the Riemannian Penrose Inequality with rigidity
(e.g. if 4 <n <7 and (M™,g) is spin c.f. [2]), then equality is attained if
and only if the part of (M™,g) outside the outermost minimal hypersurface
is isometric to the Riemannian Schwarzschild n-manifold of mass m.

We would like to point out that Galloway and Cai have an upper bound for the
Yamabe constant of the boundary horizon whenever it has negative o-invariant.
(See Theorem 5 of [5].) Also, Theorem 2.3 of Corvino’s paper [3] is similar, at least
in spirit, to part (7) of Theorem 1 above.
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2. PROOF OF THEOREM 1

Definition 2. For n > 3 and m > 0 we define the Riemannian Schwarzschild
n-manifold of mass m to be the manifold (.7 m,gn,m) = (R™\ By, (0),(1 +

%TQ_")ﬁ6ij), where 7, = (%)ﬂ%2 is the so-called Schwarzschild radius.

The Riemannian Schwarzschild manifold is the canonical model for a manifold
in .4, that contains an outermost minimal surface. Indeed, it is well known
that (S m,gn.m) is asymptotically flat and scalar flat, its boundary is a totally
geodesic (thus minimal) (n — 1)-sphere, and it does not contain any other compact
minimal hypersurfaces. It is also known that the metric on its boundary is a positive
constant multiple of the round metric on S™~1.

Definition 3. An n-dimensional Riemannian manifold (M, g) in ///XF containing
an outermost (compact) minimal hypersurface ¥ is said to satisfy the Riemannian
Penrose Inequality if

n—2
(RPI) m> <|E|> B

T 2 \wn-1

where m is the ADM-mass of (M, g), and |X| denotes the area of ¥ with respect
to g. We say that (M, g) satisfies the Riemannian Penrose Inequality with rigidity
(RPI+R) if it satisfies equation RPI, and equality in RPI is attained if and only if
the part of (M, g) outside the outermost minimal hypersurface is isometric to the
Riemannian Schwarzschild n-manifold of mass m.

What is currently known with respect to which manifolds satisfy the RPI and
RPI+R comes from a theorem of Bray and its generalization by Bray and Lee.!

Theorem 4 (Bray [1], Bray-Lee [2]). In dimension 3, any manifold in .4, con-
taining an outermost minimal surface satisfies the RPI+R. In dimensions 4 < n <

Huisken and Ilmanen also proved the 3-dimensional case of Theorem 4 in [8]. Nevertheless,
their proof requires the outermost minimal surface to be connected.
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7, any manifold in ///ZF containing outermost minimal hypersurfaces satisfies in-
equality RPI. Furthermore, if the manifold is spin, then RPI+R holds.

Remark. We use the Hawking-Galloway-Schoen Theorem in our proof to prove the
rigidity statements. More precisely, we will use their stability result, which gives
that x(X?) > 0 in dimension 3, and Y (%,g]s) > 0 in dimensions 4 and above,
where X is the outermost minimal hypersurface.

Proof of Theorem 1. To prove (i), recall that the scalar curvature of a surface twice
its Gaussian curvature, thus

8m#{components of ¥} = 47 x(2) = / 2KdA = / R¥dA,
b> b

where the first equality above follows from the Hawking-Galloway-Schoen Theorem
which gives x(2?) > 0. Using the Gauss equation we get

= / (RM —2Ric(v) — |A]* + H?)dA,
by

and by minimality H = 0, so
S IR |2~ () + 2l Ric(v)]| o (s))-
Bray’s result [1] gives that (M, g) satisfies the RPI, therefore

< AmPws(||RM ]| oo 52y + 2||Ric(v)|| oo (s)-

If equality holds throughout in the above, then we can divide by the term
(J|1RM]| Lo sy + 2||Ric(v)||L=(s)) in both sides of the last inequality. (Note that
(J|1RM ]| Lo () + 2||Ric(v)]| L= (x)) > 0 because ¥ has at least one component.) We
recover the rigidity statement of the RPI in dimension 3, which holds because of
Bray’s result [1]. Thus, the part of (M3, g) outside the outermost minimal hyper-
surface is isometric to the Riemannian Schwarzschild 3-manifold of mass m.

Conversely, consider the Riemannian Schwarzschild 3-manifold of mass m (which
clearly satisfies RPI+R). It is well known that this manifold is scalar flat, Ric(v) is
a negative constant along 3., and X is totally geodesic. This way, the first inequality
above is an equality. A straightforward calculation gives that RPI is an equality in
this case, so the second inequality above is also an equality. This finishes the proof
of (i).

The proof of (ii) goes along similar lines. Indeed, taking into consideration that

RZdV) R4V}
Y(Ehgh):inf{fzh"h3 :h e [gz;]} < 7‘[2 uh
(fz th)nfl |E n—1

and using the Gauss equation and H = 0, this gives
_n=3 .
< ||t (||RM||L°°(Z) + 2[|Ric(v)|| Lo (x))-
Combining this with the RPI (which holds by hypothesis) we obtain

2 2 )
< (2m) 72 (Wn—1) T ([|RY| e ) + 2| Ric()| o~ ().

Now suppose that the above inequalities are all equalities. Hawking-Galloway-
Schoen gives that the term (||RM || e (s;) + 2||Ric(v)||p(s)) is positive, so we may
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divide by it on both sides of the last inequality. We obtain the equality case of the
RPL IF (M, g) satisfies the RPI+R the statement follows.

We now show that these are all equalities for the Schwarzschild manifolds (-7, i,
gn.m), n > 4. The first inequality above is actually an equality because of the
solution to the Yamabe problem. Indeed, it is well known that the round metric on
a sphere (and therefore any positive multiple of it, because of scaling) minimizes
the above quotient. (See e.g. [9].) Since the metric on the boundary of ., ,, is a

multiple of the round metric on the (n — 1)-sphere (because the conformal factor
=
(1+ %7"2’")ﬁ is constant on the boundary), it follows that Y (3, g|s) = %.
|E\ﬁ
To finish the proof we note that g, ., is scalar flat, Ric(v) is a negative constant
along ¥, and ¥ is totally geodesic. This way, the second inequality above is an
equality. A straightforward calculation gives that RPI is an equality in this case,

so the third inequality above is also an equality. (I

Remark. 1t is worth noting that along the way we have shown that

=) > ( Y(5, glx) )“””2
= V(B[ z) + 20 Ric() [~ 5)

which is of interest in itself, and may be compared with equation (16) of [5].

3. OPEN PROBLEM

It would be very interesting to determine in which cases the upper bound we find
in Theorem 1 is an improvement over the Yamabe constant of the round sphere,
which is a known upper bound for Y (X, g|x).
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